Advertisements
Advertisements
प्रश्न
Find the value of 'x' in each of the following:
उत्तर
From the figure, we have
sin60° = `"BC"/"AC"`
⇒ `sqrt(3)/(2) = (12)/x`
⇒ x
= `(2 xx 12)/sqrt(3)`
= `24/sqrt(3)`
= `(8 xx 3)/sqrt(3)`
= `8sqrt(3)`.
APPEARS IN
संबंधित प्रश्न
State for any acute angle θ whether tan θ increases or decreases as θ decreases.
Calculate the value of A, if (cosec 2A - 2) (cot 3A - 1) = 0
Find the value of 'A', if cot 3A = 1
In the given figure, PQ = 6 cm, RQ = x cm and RP = 10 cm, find
a. cosθ
b. sin2θ- cos2θ
c. Use tanθ to find the value of RQ
Find the length of AD. Given: ∠ABC = 60°, ∠DBC = 45° and BC = 24 cm.
Find lengths of diagonals AC and BD. Given AB = 24 cm and ∠BAD = 60°.
In right-angled triangle ABC; ∠B = 90°. Find the magnitude of angle A, if:
a. AB is `sqrt(3)` times of BC.
B. BC is `sqrt(3)` times of BC.
Evaluate the following: cosec 54° - sec 36°
Evaluate the following: `(3sin37°)/(cos53°) - (5"cosec"39°)/(sec51°) + (4tan23° tan37° tan67° tan53°)/(cos17° cos67° "cosec"73° "cosec"23°)`
If sin(θ - 15°) = cos(θ - 25°), find the value of θ if (θ-15°) and (θ - 25°) are acute angles.