Advertisements
Advertisements
प्रश्न
Find the length of AD. Given: ∠ABC = 60°, ∠DBC = 45° and BC = 24 cm.
उत्तर
In ΔABC,
tan60° = `"AC"/"BC"`
⇒ `sqrt(3) = "AC"/(24)`
⇒ AC = `24sqrt(3)"cm"`
In ΔDBC,
tan45° = `"DC"/"BC"`
⇒ 1 = `"DC"/(24)`
⇒ DC = 24cm
Now,
AC = AD + DC
⇒ AD
= AC - DC
= `24sqrt(3) - 24`
= `24(sqrt(3) - 1)"cm"`.
APPEARS IN
संबंधित प्रश्न
If 2 sin x° - 1 = 0 and x° is an acute angle; find:
- sin x°
- x°
- cos x° and tan x°.
Solve for x : 2 cos 3x - 1 = 0
If sin 3A = 1 and 0 < A < 90°, find `tan^2A - (1)/(cos^2 "A")`
Solve for x : tan2 (x - 5°) = 3
Find the value of 'A', if `sqrt(3)cot"A"` = 1
If A = B = 60°, verify that: sin(A - B) = sinA cosB - cosA sinB
Find the value of 'x' in each of the following:
Find the value 'x', if:
Find the value 'x', if:
Evaluate the following: `(5cot5° cot15° cot25° cot35° cot45°)/(7tan45° tan55° tan65° tan75° tan85°) + (2"cosec"12° "cosec"24° cos78° cos66°)/(7sin14° sin23° sec76° sec67°)`