Advertisements
Advertisements
प्रश्न
If 2 sin x° - 1 = 0 and x° is an acute angle; find:
- sin x°
- x°
- cos x° and tan x°.
उत्तर
(i) 2 sin x° – 1 = 0
∴ sin x° = `(1)/(2)`
(ii) sin x° = `(1)/(2)`
sin x° = sin 30°
∴ x° = 30°
(iii) cos x° = cos 30° = `(sqrt3)/2`
tax x° = tan 30° = `(1)/(sqrt3)`
APPEARS IN
संबंधित प्रश्न
Solve the following equation for A, if `sqrt3` cot 2 A = 1
Calculate the value of A, if cos 3A. (2 sin 2A - 1) = 0
Find the magnitude of angle A, if 2 tan 3A cos 3A - tan 3A + 1 = 2 cos 3A
Find the value of 'A', if cot 3A = 1
If A = B = 60°, verify that: cos(A - B) = cosA cosB + sinA sinB
If `sqrt(3)`sec 2θ = 2 and θ< 90°, find the value of θ
Evaluate the following: `(sin25° cos43°)/(sin47° cos 65°)`
Evaluate the following: sin35° sin45° sec55° sec45°
Evaluate the following: `(3sin^2 40°)/(4cos^2 50°) - ("cosec"^2 28°)/(4sec^2 62°) + (cos10° cos25° cos45° "cosec"80°)/(2sin15° sin25° sin45° sin65° sec75°)`
If tan4θ = cot(θ + 20°), find the value of θ if 4θ is an acute angle.