Advertisements
Advertisements
प्रश्न
Calculate the value of A, if cos 3A. (2 sin 2A - 1) = 0
उत्तर
cos 3A (2 sin 2A – 1) = 0
cos 3A = 0 and 2 sin 2A – 1 = 0
cos 3A = cos90° and 2 sin 2A = 1
3A = 90° and sin 2A = `(1)/(2)`
A = 30° and sin 2A = sin 30°
A = 30°
2A = 30°
⇒ A = 15°
APPEARS IN
संबंधित प्रश्न
State for any acute angle θ whether cos θ increases or decreases as θ increases.
Find the value of 'A', if `sqrt(3)cot"A"` = 1
If θ = 30°, verify that: tan2θ = `(2tanθ)/(1 - tan^2θ)`
If `sqrt(3)`sec 2θ = 2 and θ< 90°, find the value of θ
Find x and y, in each of the following figure:
Evaluate the following: `(tan42°)/(cot48°) + (cos33°)/(sin57°)`
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: tan77° - cot63° + sin57°
Evaluate the following: tan(78° + θ) + cosec(42° + θ) - cot(12° - θ) - sec(48° - θ)
If secθ= cosec30° and θ is an acute angle, find the value of 4 sin2θ - 2 cos2θ.
If A + B = 90°, prove that `(tan"A" tan"B" + tan"A" cot"B")/(sin"A" sec"B") - (sin^2"B")/(cos^2"A")` = tan2A