Advertisements
Advertisements
प्रश्न
If secθ= cosec30° and θ is an acute angle, find the value of 4 sin2θ - 2 cos2θ.
उत्तर
secθ= cosec30°
⇒ secθ = 2
⇒ secθ = sec60°
⇒ θ = 60°
Now,
4sin2θ - 2cos2θ
= 4sin260° - 2cos260°
= `4 xx (sqrt(3)/2)^2 - 2 xx (1/2)^2`
= `4 xx (3)/(4) - 2 xx (1)/(4)`
= `3 - (1)/(2)`
= `(6 - 1)/(2)`
= `(5)/(2)`.
APPEARS IN
संबंधित प्रश्न
Find the value of 'A', if `sqrt(3)cot"A"` = 1
Find the value of 'A', if (1 - cosec A)(2 - sec A) = 0
Find the value of 'A', if (2 - cosec 2A) cos 3A = 0
Evaluate the following: `((sin3θ - 2sin4θ))/((cos3θ - 2cos4θ))` when 2θ = 30°
In a rectangle ABCD, AB = 20cm, ∠BAC = 60°, calculate side BC and diagonals AC and BD.
Find the value 'x', if:
Evaluate the following: `(tan42°)/(cot48°) + (cos33°)/(sin57°)`
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: sin53° + sec66° - sin50°
Evaluate the following: sin35° sin45° sec55° sec45°
Prove the following: `(tan(90° - θ)cotθ)/("cosec"^2 θ)` = cos2θ