Advertisements
Advertisements
प्रश्न
Evaluate the following: `((sin3θ - 2sin4θ))/((cos3θ - 2cos4θ))` when 2θ = 30°
उत्तर
2θ = 30°
⇒ θ = 15°
∴ `(sin3θ - 2sin4θ)/(cos3θ - 2cos4θ)`
= `(sin3 xx 15° - 2sin4 xx 15°)/(cos3 xx 15° - 2cos"4 xx 15°)`
= `"(sin45° - 2sin60°)/(cos45° - 2cos60°)`
= `(1/sqrt(2) - 2 xx sqrt(3)/(2))/((1)/sqrt(2) - 2 xx (1)/(2))`
= `(1/sqrt(2) - sqrt(3))/(1/sqrt(2) - 1)`
= `((1 - sqrt(6))/(sqrt(2)))/((1 - sqrt(2))/(sqrt(2)`
= `(1 - sqrt(6))/(1 - sqrt(2))`
= `(1 - sqrt(6))/(1 - sqrt(2)) xx (1 + sqrt(2))/(1 + sqrt(2)`
= `(1 + sqrt(2) - sqrt(6) - sqrt12)/(1 - 2)`
= `(1 + sqrt(2) - sqrt(6) - 2sqrt(3))/(-1)`
= `2sqrt(3) + sqrt(6) - sqrt(2) - 1`.
APPEARS IN
संबंधित प्रश्न
If sin x + cos y = 1 and x = 30°, find the value of y
In ΔABC, ∠B = 90° , AB = y units, BC = `(sqrt3)` units, AC = 2 units and angle A = x°, find:
- sin x°
- x°
- tan x°
- use cos x° to find the value of y.
If sin 3A = 1 and 0 < A < 90°, find `tan^2A - (1)/(cos^2 "A")`
Solve for x : 3 tan2 (2x - 20°) = 1
In the given figure, PQ = 6 cm, RQ = x cm and RP = 10 cm, find
a. cosθ
b. sin2θ- cos2θ
c. Use tanθ to find the value of RQ
In the given figure, ∠B = 60°, ∠C = 30°, AB = 8 cm and BC = 24 cm. Find:
a. BE
b. AC
Evaluate the following: sec16° tan28° - cot62° cosec74°
Evaluate the following: `(5sec68°)/("cosec"22°) + (3sin52° sec38°)/(cot51° cot39°)`
Evaluate the following: `(3sin37°)/(cos53°) - (5"cosec"39°)/(sec51°) + (4tan23° tan37° tan67° tan53°)/(cos17° cos67° "cosec"73° "cosec"23°)`
If cos3θ = sin(θ - 34°), find the value of θ if 3θ is an acute angle.