Advertisements
Advertisements
प्रश्न
If cos3θ = sin(θ - 34°), find the value of θ if 3θ is an acute angle.
उत्तर
cos3θ = sin(θ - 34°)
⇒ sin(90° - 3θ) = sin(θ - 34°)
⇒ 90° - 3θ = θ - 34°
⇒ 4θ = 124°
⇒ θ = 31°.
APPEARS IN
संबंधित प्रश्न
Solve the following equation for A, if 2cos2A = 1
Find the value of 'A', if 2 cos A = 1
Solve for 'θ': `sec(θ/2 + 10°) = (2)/sqrt(3)`
If A = B = 60°, verify that: sin(A - B) = sinA cosB - cosA sinB
If `sqrt(3)` sec 2θ = 2 and θ< 90°, find the value of
cos2 (30° + θ) + sin2 (45° - θ)
In right-angled triangle ABC; ∠B = 90°. Find the magnitude of angle A, if:
a. AB is `sqrt(3)` times of BC.
B. BC is `sqrt(3)` times of BC.
Evaluate the following: `(sec34°)/("cosec"56°)`
Evaluate the following: sin35° sin45° sec55° sec45°
If sec2θ = cosec3θ, find the value of θ if it is known that both 2θ and 3θ are acute angles.
If A + B = 90°, prove that `(tan"A" tan"B" + tan"A" cot"B")/(sin"A" sec"B") - (sin^2"B")/(cos^2"A")` = tan2A