Advertisements
Advertisements
Question
If cos3θ = sin(θ - 34°), find the value of θ if 3θ is an acute angle.
Solution
cos3θ = sin(θ - 34°)
⇒ sin(90° - 3θ) = sin(θ - 34°)
⇒ 90° - 3θ = θ - 34°
⇒ 4θ = 124°
⇒ θ = 31°.
APPEARS IN
RELATED QUESTIONS
Find the magnitude of angle A, if 2 cos2 A - 3 cos A + 1 = 0
Find the magnitude of angle A, if 2 tan 3A cos 3A - tan 3A + 1 = 2 cos 3A
Solve for x : tan2 (x - 5°) = 3
If A = B = 60°, verify that: cos(A - B) = cosA cosB + sinA sinB
If `sqrt(3)`sec 2θ = 2 and θ< 90°, find the value of θ
In a right triangle ABC, right angled at C, if ∠B = 60° and AB = 15units, find the remaining angles and sides.
Find the value of 'x' in each of the following:
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: tan77° - cot63° + sin57°
Evaluate the following: sin(35° + θ) - cos(55° - θ) - tan(42° + θ) + cot(48° - θ)
Evaluate the following: `(5cot5° cot15° cot25° cot35° cot45°)/(7tan45° tan55° tan65° tan75° tan85°) + (2"cosec"12° "cosec"24° cos78° cos66°)/(7sin14° sin23° sec76° sec67°)`