Advertisements
Advertisements
Question
If tan4θ = cot(θ + 20°), find the value of θ if 4θ is an acute angle.
Sum
Solution
tan4θ = cot(θ + 20°)
⇒ cot(90° - 4θ) = cot(θ + 20°)
⇒ 90° - 4θ= θ+ 20°
⇒ 5θ = 70°
⇒ θ = 14°.
shaalaa.com
Trigonometric Equation Problem and Solution
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
If sin 3A = 1 and 0 < A < 90°, find sin A
If sin 3A = 1 and 0 < A < 90°, find cos 2A
Find the magnitude of angle A, if 2 tan 3A cos 3A - tan 3A + 1 = 2 cos 3A
Solve for x : cos2 30° + cos2 x = 1
Solve for x : cos2 30° + sin2 2x = 1
Find the value of 'A', if (2 - cosec 2A) cos 3A = 0
If θ = 30°, verify that: sin2θ = `(2tanθ)/(1 ++ tan^2θ)`
If θ = 30°, verify that: 1 - sin 2θ = (sinθ - cosθ)2
Evaluate the following: sin(35° + θ) - cos(55° - θ) - tan(42° + θ) + cot(48° - θ)
If secθ= cosec30° and θ is an acute angle, find the value of 4 sin2θ - 2 cos2θ.