Advertisements
Advertisements
Question
Solve for x : cos2 30° + sin2 2x = 1
Solution
cos2 30° + sin2 2x = 1
sin2 2x = 1 – cos2 30°
sin2 2x = `(1)/(2)`
2x = 30°
x =15°
APPEARS IN
RELATED QUESTIONS
If 4 cos2 x° - 1 = 0 and 0 ∠ x° ∠ 90°,
find:(i) x°
(ii) sin2 x° + cos2 x°
(iii) `(1)/(cos^2xx°) – (tan^2 xx°)`
Find the magnitude of angle A, if 2 sin A cos A - cos A - 2 sin A + 1 = 0
Solve for x : 2 cos 3x - 1 = 0
Solve for x : 2 cos (3x - 15°) = 1
Solve for x : sin2 x + sin2 30° = 1
Find the value of: `sqrt((1 - sin^2 60°)/(1 + sin^2 60°)` If 3 tan2θ - 1 = 0, find the value
a. cosθ
b. sinθ
In right-angled triangle ABC; ∠B = 90°. Find the magnitude of angle A, if:
a. AB is `sqrt(3)` times of BC.
B. BC is `sqrt(3)` times of BC.
If sec2θ = cosec3θ, find the value of θ if it is known that both 2θ and 3θ are acute angles.
If cosθ = sin60° and θ is an acute angle find the value of 1- 2 sin2θ
Prove the following: sin58° sec32° + cos58° cosec32° = 2