Advertisements
Advertisements
प्रश्न
Solve for x : cos2 30° + sin2 2x = 1
उत्तर
cos2 30° + sin2 2x = 1
sin2 2x = 1 – cos2 30°
sin2 2x = `(1)/(2)`
2x = 30°
x =15°
APPEARS IN
संबंधित प्रश्न
State for any acute angle θ whether sin θ increases or decreases as θ increases
Use the given figure to find:
(i) tan θ°
(ii) θ°
(iii) sin2θ° - cos2θ°
(iv) Use sin θ° to find the value of x.
If θ = 30°, verify that: tan2θ = `(2tanθ)/(1 - tan^2θ)`
Evaluate the following: `((1 - cosθ)(1 + cosθ))/((1 - sinθ)(1 + sinθ)` if θ = 30°
In the given figure, ∠B = 60°, ∠C = 30°, AB = 8 cm and BC = 24 cm. Find:
a. BE
b. AC
Evaluate the following: sin28° sec62° + tan49° tan41°
Evaluate the following: `(sin36°)/(cos54°) + (sec31°)/("cosec"59°)`
Evaluate the following: `(2sin28°)/(cos62°) + (3cot49°)/(tan41°)`
Evaluate the following: `(sin0° sin35° sin55° sin75°)/(cos22° cos64° cos58° cos90°)`
If cosθ = sin60° and θ is an acute angle find the value of 1- 2 sin2θ