Advertisements
Advertisements
प्रश्न
Solve for x : sin2 60° + cos2 (3x- 9°) = 1
उत्तर
sin260° + cos2(3x – 9°) = 1
cos2(3x – 9°) = 1 – sin260°
cos2(3x – 9°) = 1 – `(3)/(4)`
cos2(3x – 9°) = `(1)/(4)`
cos2(3x – 9°) = `(1)/(2)`
3x – 9° = 60°
3x = 69°
x = 23°
APPEARS IN
संबंधित प्रश्न
State for any acute angle θ whether sin θ increases or decreases as θ increases
If 4 sin2 θ - 1= 0 and angle θ is less than 90°, find the value of θ and hence the value of cos2 θ + tan2θ.
Use the given figure to find:
(i) tan θ°
(ii) θ°
(iii) sin2θ° - cos2θ°
(iv) Use sin θ° to find the value of x.
Solve the following equation for A, if 2cos2A = 1
Find the magnitude of angle A, if tan A - 2 cos A tan A + 2 cos A - 1 = 0
Solve for x : tan2 (x - 5°) = 3
Find the value 'x', if:
Evaluate the following: `(sin25° cos43°)/(sin47° cos 65°)`
Evaluate the following: sin31° - cos59°
Evaluate the following: cot20° cot40° cot45° cot50° cot70°