Advertisements
Advertisements
प्रश्न
Find the value 'x', if:
उत्तर
In right ΔABC,
sin x = `"AB"/"BC"`
⇒ sin x = `sqrt(3)/(2)`
⇒ sin x = sin60°
⇒ x = 60°.
APPEARS IN
संबंधित प्रश्न
State for any acute angle θ whether sin θ increases or decreases as θ increases
In ΔABC, ∠B = 90° , AB = y units, BC = `(sqrt3)` units, AC = 2 units and angle A = x°, find:
- sin x°
- x°
- tan x°
- use cos x° to find the value of y.
Solve for x : cos2 30° + cos2 x = 1
If `sqrt(2) = 1.414 and sqrt(3) = 1.732`, find the value of the following correct to two decimal places tan60°
If θ = 30°, verify that: tan2θ = `(2tanθ)/(1 - tan^2θ)`
Evaluate the following: `((sin3θ - 2sin4θ))/((cos3θ - 2cos4θ))` when 2θ = 30°
If A = B = 60°, verify that: cos(A - B) = cosA cosB + sinA sinB
Find the value 'x', if:
Evaluate the following: `(2sin25° sin35° sec55° sec65°)/(5tan 29° tan45° tan61°) + (3cos20° cos50° cot70° cot40°)/(5tan20° tan50° sin70° sin40°)`
If secθ= cosec30° and θ is an acute angle, find the value of 4 sin2θ - 2 cos2θ.