Advertisements
Advertisements
प्रश्न
If θ = 30°, verify that: tan2θ = `(2tanθ)/(1 - tan^2θ)`
उत्तर
Given: θ = 30°
L.H.S.
= tan2θ
= tan2 x 30°
= tan60°
= `sqrt(3)`
R.H.S.
= `(2tanθ)/(1 - tan^2θ)`
= `(2tan30°)/(1 - tan^2 30°)`
= `(2 xx 1/sqrt(3))/(1 - (1/sqrt(3))^2`
= `(2/sqrt(3))/(1 - 1/3)`
= `((2)/sqrt(3))/(2/3)`
= `(2)/sqrt(3) xx (3)/(2)`
= `sqrt(3)`
⇒ L.H.S. = R.H.S.
⇒ tan2θ = `(2tanθ)/(1 - tan^2 θ)`.
APPEARS IN
संबंधित प्रश्न
Use the given figure to find:
(i) tan θ°
(ii) θ°
(iii) sin2θ° - cos2θ°
(iv) Use sin θ° to find the value of x.
In ΔABC, ∠B = 90° , AB = y units, BC = `(sqrt3)` units, AC = 2 units and angle A = x°, find:
- sin x°
- x°
- tan x°
- use cos x° to find the value of y.
Calculate the value of A, if (sec 2A - 1) (cosec 3A - 1) = 0
Solve for x : sin2 60° + cos2 (3x- 9°) = 1
Find the value of 'A', if 2 cos A = 1
Find lengths of diagonals AC and BD. Given AB = 24 cm and ∠BAD = 60°.
Find the value 'x', if:
Evaluate the following: `(sec34°)/("cosec"56°)`
Evaluate the following: cot20° cot40° cot45° cot50° cot70°
If secθ= cosec30° and θ is an acute angle, find the value of 4 sin2θ - 2 cos2θ.