Advertisements
Advertisements
प्रश्न
In ΔABC, ∠B = 90° , AB = y units, BC = `(sqrt3)` units, AC = 2 units and angle A = x°, find:
- sin x°
- x°
- tan x°
- use cos x° to find the value of y.
उत्तर
(i) From Δ ABC,
sin x° = `"perpendicular"/"Hypotenus" = (sqrt3)/(2)`
(ii) sin x° = `(sqrt3)/(2)`
sin x° = sin 60°
x° = 60°
(iii) tan x° = tan 60°
tan x° = `(sqrt3)`
(iv) cos x° = `"y"/2`
cos 60° = `"y"/2`
`1/2 = "y"/2`
`2/2` = y
∴ y = 1
APPEARS IN
संबंधित प्रश्न
Calculate the value of A, if (sin A - 1) (2 cos A - 1) = 0
If 4 cos2 x° - 1 = 0 and 0 ∠ x° ∠ 90°,
find:(i) x°
(ii) sin2 x° + cos2 x°
(iii) `(1)/(cos^2xx°) – (tan^2 xx°)`
If tanθ= cotθ and 0°≤ θ ≤ 90°, find the value of 'θ'.
If A = B = 60°, verify that: cos(A - B) = cosA cosB + sinA sinB
If A = B = 60°, verify that: tan(A - B) = `(tan"A" - tan"B")/(1 + tan"A" tan"B"")`
In right-angled triangle ABC; ∠B = 90°. Find the magnitude of angle A, if:
a. AB is `sqrt(3)` times of BC.
B. BC is `sqrt(3)` times of BC.
Evaluate the following: `(sin25° cos43°)/(sin47° cos 65°)`
Evaluate the following: `(5sec68°)/("cosec"22°) + (3sin52° sec38°)/(cot51° cot39°)`
Evaluate the following: cot20° cot40° cot45° cot50° cot70°
Evaluate the following: `(sin0° sin35° sin55° sin75°)/(cos22° cos64° cos58° cos90°)`