Advertisements
Advertisements
प्रश्न
Calculate the value of A, if (sin A - 1) (2 cos A - 1) = 0
उत्तर
( sin A – 1) ( 2 cos A – 1) = 0
(sin A – 1) = 0 and 2 cos A – 1 = 0
sin A = 1 and cos A = `(1)/(2)`
sin A = sin90° and cos A = cos60°
A = 90° and A = 60°
APPEARS IN
संबंधित प्रश्न
If 4 sin2 θ - 1= 0 and angle θ is less than 90°, find the value of θ and hence the value of cos2 θ + tan2θ.
If sin 3A = 1 and 0 < A < 90°, find cos 2A
Find the magnitude of angle A, if 2 tan 3A cos 3A - tan 3A + 1 = 2 cos 3A
Solve for x : cos (2x - 30°) = 0
Find the value of 'A', if cot 3A = 1
If sin α + cosβ = 1 and α= 90°, find the value of 'β'.
Evaluate the following: `(sin36°)/(cos54°) + (sec31°)/("cosec"59°)`
Prove the following: tanθ tan(90° - θ) = cotθ cot(90° - θ)
Prove the following: `(tan(90° - θ)cotθ)/("cosec"^2 θ)` = cos2θ
Prove the following: sin230° + cos230° = `(1)/(2)sec60°`