Advertisements
Advertisements
प्रश्न
Calculate the value of A, if (tan A - 1) (cosec 3A - 1) = 0
उत्तर
( tan A – 1) ( cosec 3A – 1) = 0
tan A – 1 = 0 and cosec 3A – 1 = 0
tan A = 1 and cosec 3A = 1
tan A = tan45° and cosec 3A = cosec90°
A = 45° and A = 30°
APPEARS IN
संबंधित प्रश्न
If 4 cos2 x° - 1 = 0 and 0 ∠ x° ∠ 90°,
find:(i) x°
(ii) sin2 x° + cos2 x°
(iii) `(1)/(cos^2xx°) – (tan^2 xx°)`
Use the given figure to find:
(i) tan θ°
(ii) θ°
(iii) sin2θ° - cos2θ°
(iv) Use sin θ° to find the value of x.
If 2 cos (A + B) = 2 sin (A - B) = 1;
find the values of A and B.
Solve the following equation for A, if 2 sin 3 A = 1
Solve for x : cos2 30° + sin2 2x = 1
If sin α + cosβ = 1 and α= 90°, find the value of 'β'.
Find the value of: `sqrt((1 - sin^2 60°)/(1 + sin^2 60°)` If 3 tan2θ - 1 = 0, find the value
a. cosθ
b. sinθ
Find the value of 'x' in each of the following:
Find the value 'x', if:
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: sin53° + sec66° - sin50°