Advertisements
Advertisements
प्रश्न
Calculate the value of A, if (tan A - 1) (cosec 3A - 1) = 0
उत्तर
( tan A – 1) ( cosec 3A – 1) = 0
tan A – 1 = 0 and cosec 3A – 1 = 0
tan A = 1 and cosec 3A = 1
tan A = tan45° and cosec 3A = cosec90°
A = 45° and A = 30°
APPEARS IN
संबंधित प्रश्न
If 2 sin x° - 1 = 0 and x° is an acute angle; find:
- sin x°
- x°
- cos x° and tan x°.
In ΔABC, ∠B = 90° , AB = y units, BC = `(sqrt3)` units, AC = 2 units and angle A = x°, find:
- sin x°
- x°
- tan x°
- use cos x° to find the value of y.
If 2 cos (A + B) = 2 sin (A - B) = 1;
find the values of A and B.
Solve the following equation for A, if tan 3 A = 1
Evaluate the following: `((sin3θ - 2sin4θ))/((cos3θ - 2cos4θ))` when 2θ = 30°
If `sqrt(3)`sec 2θ = 2 and θ< 90°, find the value of θ
Evaluate the following: `(sin36°)/(cos54°) + (sec31°)/("cosec"59°)`
Evaluate the following: cos39° cos48° cos60° cosec42° cosec51°
Evaluate the following: `(2sin25° sin35° sec55° sec65°)/(5tan 29° tan45° tan61°) + (3cos20° cos50° cot70° cot40°)/(5tan20° tan50° sin70° sin40°)`
Prove the following: sin58° sec32° + cos58° cosec32° = 2