Advertisements
Advertisements
प्रश्न
If 2 cos (A + B) = 2 sin (A - B) = 1;
find the values of A and B.
उत्तर
2 cos (A + B) = 1
cos (A + B) = `(1)/(2)`
cos (A+B) = cos 60°
A + B = 60° ........( 1)
2 sin (A – B) = 1
2 sin (A – B) = `(1)/(2)`
A – B = 30° ........(2)
Adding (1) and (2)
A + B + A – B = 60° + 30°
2A = 90°
A = 45°
A + B = 60°
B = 60° – A
B = 60 – 45°
B = 15°
APPEARS IN
संबंधित प्रश्न
State for any acute angle θ whether sin θ increases or decreases as θ increases
Find the magnitude of angle A, if 2 sin A cos A - cos A - 2 sin A + 1 = 0
Solve for x : 2 cos 3x - 1 = 0
Calculate the value of A, if (cosec 2A - 2) (cot 3A - 1) = 0
Solve for x : cos2 30° + sin2 2x = 1
In the given figure, PQ = 6 cm, RQ = x cm and RP = 10 cm, find
a. cosθ
b. sin2θ- cos2θ
c. Use tanθ to find the value of RQ
Find lengths of diagonals AC and BD. Given AB = 24 cm and ∠BAD = 60°.
Find the length of EC.
Find:
a. BC
b. AD
c. AC
Evaluate the following: `(3sin^2 40°)/(4cos^2 50°) - ("cosec"^2 28°)/(4sec^2 62°) + (cos10° cos25° cos45° "cosec"80°)/(2sin15° sin25° sin45° sin65° sec75°)`