Advertisements
Advertisements
प्रश्न
Find the magnitude of angle A, if 2 sin A cos A - cos A - 2 sin A + 1 = 0
उत्तर
2 sin A cos A – cos A – 2 sin A + 1 = 0
2 sin A cos A – cos A = 2 sin A – 1
(2 sin A – 1) cos A – (2 sin A – 1) = 0
(2 sin A – 1) = 0 and cos A = 1
sin A =`(1)/(2)` and cos A = cos 0°
A = 30° and A = 0°
APPEARS IN
संबंधित प्रश्न
Use the given figure to find:
(i) tan θ°
(ii) θ°
(iii) sin2θ° - cos2θ°
(iv) Use sin θ° to find the value of x.
State for any acute angle θ whether cos θ increases or decreases as θ increases.
Solve for x : cos `(x)/(3) –1` = 0
Solve for x : cos2 30° + cos2 x = 1
Solve for 'θ': cot2(θ - 5)° = 3
Evaluate the following: `((sin3θ - 2sin4θ))/((cos3θ - 2cos4θ))` when 2θ = 30°
If θ < 90°, find the value of: sin2θ + cos2θ
Find the value of 'x' in each of the following:
If tan x° = `(5)/(12) . tan y° = (3)/(4)` and AB = 48m; find the length CD.
If sec2θ = cosec3θ, find the value of θ if it is known that both 2θ and 3θ are acute angles.