Advertisements
Advertisements
प्रश्न
Use the given figure to find:
(i) tan θ°
(ii) θ°
(iii) sin2θ° - cos2θ°
(iv) Use sin θ° to find the value of x.
उत्तर
(i) tan θ° = `(5)/(5) = 1`
(ii) tan θ° = 1
tan θ° = tan 45°
θ° = 45°
(iii) sin2θ° – cos2θ° = sin245° – cos2 45°
= `(1/sqrt2)^2 – (1/sqrt2)^2`
= 0
(iv) sinθ° = `(5)/(x)`
sin 45° = `(5)/(x)`
x = `(5)/(sin45°)`
x = `(5)/(1/sqrt2)`
x = 5`sqrt2`
APPEARS IN
संबंधित प्रश्न
Find the magnitude of angle A, if 2 sin A cos A - cos A - 2 sin A + 1 = 0
State for any acute angle θ whether tan θ increases or decreases as θ decreases.
If sin 3A = 1 and 0 < A < 90°, find cos 2A
If 3 tan A - 5 cos B = `sqrt3` and B = 90°, find the value of A
Solve for 'θ': `sin θ/(3)` = 1
If θ = 30°, verify that: sin2θ = `(2tanθ)/(1 ++ tan^2θ)`
In the given figure, ∠B = 60°, ∠C = 30°, AB = 8 cm and BC = 24 cm. Find:
a. BE
b. AC
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: tan77° - cot63° + sin57°
If tan4θ = cot(θ + 20°), find the value of θ if 4θ is an acute angle.
Prove the following: sin230° + cos230° = `(1)/(2)sec60°`