Advertisements
Advertisements
प्रश्न
If 3 tan A - 5 cos B = `sqrt3` and B = 90°, find the value of A
उत्तर
Given that B = 90°
3 tan A – 5 cos B = `sqrt3`
3 tan A – 5 cos 90° = `sqrt3`
3 tan A – 0 = `sqrt3`
tan A = `(sqrt3)/(3)`
tan A = `(1)/(sqrt3)`
tan A = tan 30°
A = 30°
APPEARS IN
संबंधित प्रश्न
Solve for x : cos `(x)/(3) –1` = 0
Solve for x : cos (2x - 30°) = 0
Find the value of 'A', if `sqrt(3)cot"A"` = 1
If A = B = 60°, verify that: tan(A - B) = `(tan"A" - tan"B")/(1 + tan"A" tan"B"")`
Find the value of 'x' in each of the following:
Evaluate the following: `(3sin37°)/(cos53°) - (5"cosec"39°)/(sec51°) + (4tan23° tan37° tan67° tan53°)/(cos17° cos67° "cosec"73° "cosec"23°)`
Evaluate the following: `(2sin25° sin35° sec55° sec65°)/(5tan 29° tan45° tan61°) + (3cos20° cos50° cot70° cot40°)/(5tan20° tan50° sin70° sin40°)`
If cosθ = sin60° and θ is an acute angle find the value of 1- 2 sin2θ
If secθ= cosec30° and θ is an acute angle, find the value of 4 sin2θ - 2 cos2θ.
If A + B = 90°, prove that `(tan"A" tan"B" + tan"A" cot"B")/(sin"A" sec"B") - (sin^2"B")/(cos^2"A")` = tan2A