Advertisements
Advertisements
प्रश्न
If sin x + cos y = 1 and x = 30°, find the value of y
उत्तर
Given that x = 30°
sin x + cos y = 1
sin 30° + cos y = 1
cos y = 1 – sin 30°
cos y = 1 –`(1)/(2)`
cos y = `(1)/(2)`
cos y = cos 60°
y = 60°
APPEARS IN
संबंधित प्रश्न
If sin 3A = 1 and 0 < A < 90°, find sin A
Solve the following equation for A, if 2 sin A = 1
Find the magnitude of angle A, if 2 tan 3A cos 3A - tan 3A + 1 = 2 cos 3A
Find the value of 'A', if (2 - cosec 2A) cos 3A = 0
If θ = 30°, verify that: sin 3θ = 4sinθ . sin(60° - θ) sin(60° + θ)
In the given figure, AB and EC are parallel to each other. Sides AD and BC are 1.5 cm each and are perpendicular to AB. Given that ∠AED = 45° and ∠ACD = 30°. Find:
a. AB
b. AC
c. AE
Evaluate the following: sin31° - cos59°
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: tan77° - cot63° + sin57°
Evaluate the following: `(sin0° sin35° sin55° sin75°)/(cos22° cos64° cos58° cos90°)`
Prove the following: tanθ tan(90° - θ) = cotθ cot(90° - θ)