Advertisements
Advertisements
प्रश्न
If sin x + cos y = 1 and x = 30°, find the value of y
उत्तर
Given that x = 30°
sin x + cos y = 1
sin 30° + cos y = 1
cos y = 1 – sin 30°
cos y = 1 –`(1)/(2)`
cos y = `(1)/(2)`
cos y = cos 60°
y = 60°
APPEARS IN
संबंधित प्रश्न
If 4 cos2 x = 3 and x is an acute angle;
find the value of :
(i) x
(ii) cos2 x + cot2 x
(iii) cos 3x (iv) sin 2x
Calculate the value of A, if (cosec 2A - 2) (cot 3A - 1) = 0
If sin 3A = 1 and 0 < A < 90°, find cos 2A
Solve for x : sin (x + 10°) = `(1)/(2)`
If θ < 90°, find the value of: `tan^2θ - (1)/cos^2θ`
The perimeter of a rhombus is 100 cm and obtuse angle of it is 120°. Find the lengths of its diagonals.
Evaluate the following: sin22° cos44° - sin46° cos68°
If cosθ = sin60° and θ is an acute angle find the value of 1- 2 sin2θ
If secθ= cosec30° and θ is an acute angle, find the value of 4 sin2θ - 2 cos2θ.
Prove the following: sin58° sec32° + cos58° cosec32° = 2