Advertisements
Advertisements
प्रश्न
Prove the following: sin58° sec32° + cos58° cosec32° = 2
उत्तर
L.H.S.
= sin58° sec32° + cos58° cosec32°
= `sin(90° - 32°) xx (1)/(cos32°) + cos(90° - 32°) xx (1)/(sin32°)`
= `cos32° xx (1)/(cos32°) + sin32° xx (1)/(sin32°)`
= 1 + 1
= 2
= R.H.S.
APPEARS IN
संबंधित प्रश्न
State for any acute angle θ whether cos θ increases or decreases as θ increases.
Find the value of 'A', if cosec 3A = `(2)/sqrt(3)`
Find the value of 'A', if cot 3A = 1
If sin α + cosβ = 1 and α= 90°, find the value of 'β'.
If A = B = 60°, verify that: tan(A - B) = `(tan"A" - tan"B")/(1 + tan"A" tan"B"")`
Find the value of 'x' in each of the following:
In the given figure, ∠B = 60°, ∠C = 30°, AB = 8 cm and BC = 24 cm. Find:
a. BE
b. AC
Evaluate the following: tan(78° + θ) + cosec(42° + θ) - cot(12° - θ) - sec(48° - θ)
If cos3θ = sin(θ - 34°), find the value of θ if 3θ is an acute angle.
Prove the following: tanθ tan(90° - θ) = cotθ cot(90° - θ)