Advertisements
Advertisements
प्रश्न
Find the value of 'x' in each of the following:
उत्तर
From the figure, we have
cos x = `"AB"/"AC"`
⇒ cos x = `(12)/(24)`
⇒ cos x = `(1)/(2)`
⇒ cos x = cos60°
⇒ x = 60°.
APPEARS IN
संबंधित प्रश्न
In ΔABC, ∠B = 90° , AB = y units, BC = `(sqrt3)` units, AC = 2 units and angle A = x°, find:
- sin x°
- x°
- tan x°
- use cos x° to find the value of y.
Solve for x : tan2 (x - 5°) = 3
Solve for x : cos `(x/(2)+10°) = (sqrt3)/(2)`
Solve for x : sin2 x + sin2 30° = 1
Find the value of 'A', if 2 cos A = 1
If tanθ= cotθ and 0°≤ θ ≤ 90°, find the value of 'θ'.
If θ = 30°, verify that: sin 3θ = 4sinθ . sin(60° - θ) sin(60° + θ)
In the given figure, AB and EC are parallel to each other. Sides AD and BC are 1.5 cm each and are perpendicular to AB. Given that ∠AED = 45° and ∠ACD = 30°. Find:
a. AB
b. AC
c. AE
Find the value 'x', if:
Evaluate the following: `(5cot5° cot15° cot25° cot35° cot45°)/(7tan45° tan55° tan65° tan75° tan85°) + (2"cosec"12° "cosec"24° cos78° cos66°)/(7sin14° sin23° sec76° sec67°)`