Advertisements
Advertisements
प्रश्न
Evaluate the following: `(5cot5° cot15° cot25° cot35° cot45°)/(7tan45° tan55° tan65° tan75° tan85°) + (2"cosec"12° "cosec"24° cos78° cos66°)/(7sin14° sin23° sec76° sec67°)`
उत्तर
`(5cot5° cot15° cot25° cot35° cot45°)/(7tan45° tan55° tan65° tan75° tan85°) + (2"cosec"12° "cosec"24° cos78° cos66°)/(7sin14° sin23° sec76° sec67°)`
= `(5cot(90° - 85°) cot(90° - 75°) cot(90° - 65°) cot(90° - 55°) xx 1)/(7 xx 1xx tan55° tan65° tan75° tan85°) + (2"cosec"(90° - 78°) "cosec"(90° - 66°) cos78° cos66°)/(7sin(90° - 76°) sin(90° - 67°) sec76° sec67°)`
= `(5tan85° tan75° tan65° tan55°)/(7 xx tan55° tan65° tan75° tan85°) + (2sec78° sec66° xx 1/(sec78°) xx 1/(sec66°))/(7cos76° cos67° xx 1/(cos76°) xx 1/(cos67°)`
= `(5)/(7) + (2)/(7)`
= `(7)/(7)`
= 1.
APPEARS IN
संबंधित प्रश्न
From the given figure,
find:
(i) cos x°
(ii) x°
(iii) `(1)/(tan^2 xx°) – (1)/(sin^2xx°)`
(iv) Use tan xo, to find the value of y.
Solve for x : sin2 x + sin2 30° = 1
Solve for x : cos2 30° + sin2 2x = 1
Find the value of 'A', if cosec 3A = `(2)/sqrt(3)`
If θ = 30°, verify that: sin 3θ = 4sinθ . sin(60° - θ) sin(60° + θ)
Evaluate the following: `((1 - cosθ)(1 + cosθ))/((1 - sinθ)(1 + sinθ)` if θ = 30°
If A = B = 60°, verify that: cos(A - B) = cosA cosB + sinA sinB
Find the value of 'y' if `sqrt(3)` = 1.723.
Given your answer correct to 2 decimal places.
Evaluate the following: `(sin62°)/(cos28°)`
If cosθ = sin60° and θ is an acute angle find the value of 1- 2 sin2θ