Advertisements
Advertisements
प्रश्न
Solve for x : sin2 x + sin2 30° = 1
उत्तर
sin2x + sin230° = 1
sin2x = 1 –sin2 30°
sin2x = 1 – `(1)/(4)`
sin2x = `(sqrt3)/(2)`
x = 60°
APPEARS IN
संबंधित प्रश्न
Calculate the value of A, if (sin A - 1) (2 cos A - 1) = 0
Find the value of 'A', if cosec 3A = `(2)/sqrt(3)`
Find the value of 'A', if 2cos 3A = 1
If tanθ= cotθ and 0°≤ θ ≤ 90°, find the value of 'θ'.
If θ = 15°, find the value of: cos3θ - sin6θ + 3sin(5θ + 15°) - 2 tan23θ
Find the length of AD. Given: ∠ABC = 60°, ∠DBC = 45° and BC = 24 cm.
In right-angled triangle ABC; ∠B = 90°. Find the magnitude of angle A, if:
a. AB is `sqrt(3)` times of BC.
B. BC is `sqrt(3)` times of BC.
Evaluate the following: sin22° cos44° - sin46° cos68°
Prove the following: tanθ tan(90° - θ) = cotθ cot(90° - θ)
Prove the following: sin58° sec32° + cos58° cosec32° = 2