Advertisements
Advertisements
प्रश्न
In right-angled triangle ABC; ∠B = 90°. Find the magnitude of angle A, if:
a. AB is `sqrt(3)` times of BC.
B. BC is `sqrt(3)` times of BC.
उत्तर
Consider the following figure,
a. Given, AB = `sqrt(3) xx "BC"`
⇒ `"AB"/"BC" = sqrt(3)`
⇒ cot θ = `sqrt(3)`
⇒ cot θ = cot30°
⇒ θ = 30°.
b. Given, BC = `sqrt(3) xx "AB"`
⇒ `"BC"/"AB" = sqrt(3)`
⇒ tan θ = `sqrt(3)`
⇒ tan θ = tan60°
⇒ θ = 60°.
APPEARS IN
संबंधित प्रश्न
If 2 cos 2A = `sqrt3` and A is acute,
find:
(i) A
(ii) sin 3A
(iii) sin2 (75° - A) + cos2 (45° +A)
From the given figure,
find:
(i) cos x°
(ii) x°
(iii) `(1)/(tan^2 xx°) – (1)/(sin^2xx°)`
(iv) Use tan xo, to find the value of y.
Solve the following equation for A, if 2 sin 3 A = 1
Solve for x : cos `(x/(2)+10°) = (sqrt3)/(2)`
If θ = 15°, find the value of: cos3θ - sin6θ + 3sin(5θ + 15°) - 2 tan23θ
Find the value of: `sqrt((1 - sin^2 60°)/(1 + sin^2 60°)` If 3 tan2θ - 1 = 0, find the value
a. cosθ
b. sinθ
Evaluate the following: `(3sin37°)/(cos53°) - (5"cosec"39°)/(sec51°) + (4tan23° tan37° tan67° tan53°)/(cos17° cos67° "cosec"73° "cosec"23°)`
If cos3θ = sin(θ - 34°), find the value of θ if 3θ is an acute angle.
If sin(θ - 15°) = cos(θ - 25°), find the value of θ if (θ-15°) and (θ - 25°) are acute angles.
Prove the following: sin230° + cos230° = `(1)/(2)sec60°`