Advertisements
Advertisements
प्रश्न
In a rectangle ABCD, AB = 20cm, ∠BAC = 60°, calculate side BC and diagonals AC and BD.
उत्तर
In ΔABC,
tan60° = `"BC"/"AB"`
⇒ BC = tan60° x AB
⇒ BC = `sqrt(3) xx 20`
⇒ BC = `20sqrt(3)"cm"`
cos60° = `"AB"/"AC"`
⇒ AC = `"AB"/"cos60°"`
⇒ AC = `(20)/(1)`
⇒ AC
= 20 x 2
= 40cm
Since diagonals of a rectangle are equal, therefore BD = AC = 40cm.
APPEARS IN
संबंधित प्रश्न
Solve the following equation for A, if 2 sin A = 1
Solve for x : cos2 30° + sin2 2x = 1
If θ = 15°, find the value of: cos3θ - sin6θ + 3sin(5θ + 15°) - 2 tan23θ
If A = B = 60°, verify that: cos(A - B) = cosA cosB + sinA sinB
Find lengths of diagonals AC and BD. Given AB = 24 cm and ∠BAD = 60°.
Find the value 'x', if:
The perimeter of a rhombus is 100 cm and obtuse angle of it is 120°. Find the lengths of its diagonals.
In the given figure, a rocket is fired vertically upwards from its launching pad P. It first rises 20 km vertically upwards and then 20 km at 60° to the vertical. PQ represents the first stage of the journey and QR the second. S is a point vertically below R on the horizontal level as P, find:
a. the height of the rocket when it is at point R.
b. the horizontal distance of point S from P.
Evaluate the following: `(2sin28°)/(cos62°) + (3cot49°)/(tan41°)`
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: cosec64° + sec70°