Advertisements
Advertisements
Question
In a rectangle ABCD, AB = 20cm, ∠BAC = 60°, calculate side BC and diagonals AC and BD.
Solution
In ΔABC,
tan60° = `"BC"/"AB"`
⇒ BC = tan60° x AB
⇒ BC = `sqrt(3) xx 20`
⇒ BC = `20sqrt(3)"cm"`
cos60° = `"AB"/"AC"`
⇒ AC = `"AB"/"cos60°"`
⇒ AC = `(20)/(1)`
⇒ AC
= 20 x 2
= 40cm
Since diagonals of a rectangle are equal, therefore BD = AC = 40cm.
APPEARS IN
RELATED QUESTIONS
Find the magnitude of angle A, if 2 tan 3A cos 3A - tan 3A + 1 = 2 cos 3A
If A = 30°, verify that cos2θ = `(1 - tan^2 θ)/(1 + tan^2 θ)` = cos4θ - sin4θ = 2cos2θ - 1 - 2sin2θ
If θ = 15°, find the value of: cos3θ - sin6θ + 3sin(5θ + 15°) - 2 tan23θ
If A = B = 60°, verify that: tan(A - B) = `(tan"A" - tan"B")/(1 + tan"A" tan"B"")`
If `sqrt(3)`sec 2θ = 2 and θ< 90°, find the value of θ
Find the value of 'y' if `sqrt(3)` = 1.723.
Given your answer correct to 2 decimal places.
Find the value of 'y' if `sqrt(3)` = 1.723.
Given your answer correct to 2 decimal places.
In right-angled triangle ABC; ∠B = 90°. Find the magnitude of angle A, if:
a. AB is `sqrt(3)` times of BC.
B. BC is `sqrt(3)` times of BC.
Evaluate the following: `(sin62°)/(cos28°)`
Evaluate the following: `(5cot5° cot15° cot25° cot35° cot45°)/(7tan45° tan55° tan65° tan75° tan85°) + (2"cosec"12° "cosec"24° cos78° cos66°)/(7sin14° sin23° sec76° sec67°)`