Advertisements
Advertisements
Question
If ΔABC is a right triangle such that ∠C = 90°, ∠A = 45° and BC =7units, find ∠B, AB and AC.
Solution
∠C = 90°, ∠A = 45°
∠A + ∠B + ∠C = 180°
45° + ∠B + 90° = 180°
∠B = 180° - 135°
∠= 45°
sin45° = `"BC"/"AB"`
⇒ AB = `"BC"/"sin45°"`
⇒ AB = `(7)/(1/sqrt(2)`
⇒ AB = `7sqrt(2)"units"`
Also,
tan45° = `"BC"/"AC"`
⇒ AC = `"BC"/tan45°"`
⇒ AC = `(7)/(1)`
⇒ AC = 7units.
APPEARS IN
RELATED QUESTIONS
If 2 sin x° - 1 = 0 and x° is an acute angle; find:
- sin x°
- x°
- cos x° and tan x°.
If 2 cos 2A = `sqrt3` and A is acute,
find:
(i) A
(ii) sin 3A
(iii) sin2 (75° - A) + cos2 (45° +A)
If 4 cos2 x = 3 and x is an acute angle;
find the value of :
(i) x
(ii) cos2 x + cot2 x
(iii) cos 3x (iv) sin 2x
Solve for x : cos (2x - 30°) = 0
Find the value of 'A', if (1 - cosec A)(2 - sec A) = 0
If `sqrt(2) = 1.414 and sqrt(3) = 1.732`, find the value of the following correct to two decimal places tan60°
If `sqrt(3)` sec 2θ = 2 and θ< 90°, find the value of
cos2 (30° + θ) + sin2 (45° - θ)
Find the value of 'x' in each of the following:
Find the value of 'y' if `sqrt(3)` = 1.723.
Given your answer correct to 2 decimal places.
Evaluate the following: `(sin25° cos43°)/(sin47° cos 65°)`