Advertisements
Advertisements
प्रश्न
If ΔABC is a right triangle such that ∠C = 90°, ∠A = 45° and BC =7units, find ∠B, AB and AC.
उत्तर
∠C = 90°, ∠A = 45°
∠A + ∠B + ∠C = 180°
45° + ∠B + 90° = 180°
∠B = 180° - 135°
∠= 45°
sin45° = `"BC"/"AB"`
⇒ AB = `"BC"/"sin45°"`
⇒ AB = `(7)/(1/sqrt(2)`
⇒ AB = `7sqrt(2)"units"`
Also,
tan45° = `"BC"/"AC"`
⇒ AC = `"BC"/tan45°"`
⇒ AC = `(7)/(1)`
⇒ AC = 7units.
APPEARS IN
संबंधित प्रश्न
Calculate the value of A, if (tan A - 1) (cosec 3A - 1) = 0
Solve for x : cos (2x - 30°) = 0
Solve for x : cos2 30° + sin2 2x = 1
If `sqrt(2) = 1.414 and sqrt(3) = 1.732`, find the value of the following correct to two decimal places tan60°
If θ = 30°, verify that: sin 3θ = 4sinθ . sin(60° - θ) sin(60° + θ)
If θ < 90°, find the value of: `tan^2θ - (1)/cos^2θ`
Find the value of 'x' in each of the following:
Evaluate the following: sin31° - cos59°
Evaluate the following: cot27° - tan63°
Prove the following: tanθ tan(90° - θ) = cotθ cot(90° - θ)