Advertisements
Advertisements
प्रश्न
In a rectangle ABCD, AB = 20cm, ∠BAC = 60°, calculate side BC and diagonals AC and BD.
उत्तर
In ΔABC,
tan60° = `"BC"/"AB"`
⇒ BC = tan60° x AB
⇒ BC = `sqrt(3) xx 20`
⇒ BC = `20sqrt(3)"cm"`
cos60° = `"AB"/"AC"`
⇒ AC = `"AB"/"cos60°"`
⇒ AC = `(20)/(1)`
⇒ AC
= 20 x 2
= 40cm
Since diagonals of a rectangle are equal, therefore BD = AC = 40cm.
APPEARS IN
संबंधित प्रश्न
Calculate the value of A, if (sec 2A - 1) (cosec 3A - 1) = 0
Solve for x : sin (x + 10°) = `(1)/(2)`
If θ = 30°, verify that: sin2θ = `(2tanθ)/(1 ++ tan^2θ)`
If θ < 90°, find the value of: `tan^2θ - (1)/cos^2θ`
Find the value of 'x' in each of the following:
If tan x° = `(5)/(12) . tan y° = (3)/(4)` and AB = 48m; find the length CD.
Evaluate the following: `(cos34° cos35°)/(sin57° sin56°)`
Evaluate the following: cot20° cot40° cot45° cot50° cot70°
Prove the following: tanθ tan(90° - θ) = cotθ cot(90° - θ)
Prove the following: `(tan(90° - θ)cotθ)/("cosec"^2 θ)` = cos2θ