Advertisements
Advertisements
प्रश्न
Find the value of 'x' in each of the following:
उत्तर
From the figure, we have
sin x = `"BC"/"AC"`
⇒ sin x = `(15/sqrt(2))/(15)`
⇒ sin x = `(1)/sqrt(2)`
⇒ sin x = sin45°
⇒ x = 45°.
APPEARS IN
संबंधित प्रश्न
Calculate the value of A, if (sec 2A - 1) (cosec 3A - 1) = 0
If tanθ= cotθ and 0°≤ θ ≤ 90°, find the value of 'θ'.
If θ = 30°, verify that: 1 - sin 2θ = (sinθ - cosθ)2
If A = B = 60°, verify that: cos(A - B) = cosA cosB + sinA sinB
If `sqrt(3)` sec 2θ = 2 and θ< 90°, find the value of
cos2 (30° + θ) + sin2 (45° - θ)
A ladder is placed against a vertical tower. If the ladder makes an angle of 30° with the ground and reaches upto a height of 18 m of the tower; find length of the ladder.
Evaluate the following: sin28° sec62° + tan49° tan41°
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: cosec64° + sec70°
Prove the following: `(tan(90° - θ)cotθ)/("cosec"^2 θ)` = cos2θ
Prove the following: sin230° + cos230° = `(1)/(2)sec60°`