Advertisements
Advertisements
प्रश्न
If `sqrt(3)` sec 2θ = 2 and θ< 90°, find the value of
cos2 (30° + θ) + sin2 (45° - θ)
उत्तर
`sqrt(3)`sec 2θ = 2
⇒ sec2θ = `(2)/sqrt(3)`
⇒ sec2θ = sec30°
⇒ 2θ = 30°
⇒ θ =15°
∴ cos2(30° + θ) + sin2(45° - θ)
= cos2(30° + 15°) + sin245° - 15°)
= cos245° sin230°
= `(1/sqrt(2))^2 + (1/2)^2`
= `(1)/(2) + (1)/(4)`
= `(3)/(4)`.
APPEARS IN
संबंधित प्रश्न
Calculate the value of A, if (sec 2A - 1) (cosec 3A - 1) = 0
Find the value of 'A', if cot 3A = 1
If `sqrt(3)` sec 2θ = 2 and θ< 90°, find the value of
cos 3θ
Find the value of 'x' in each of the following:
Find the length of EC.
Find the value 'x', if:
A ladder is placed against a vertical tower. If the ladder makes an angle of 30° with the ground and reaches upto a height of 18 m of the tower; find length of the ladder.
Evaluate the following: cot27° - tan63°
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: cos72° - cos88°
Evaluate the following: tan(78° + θ) + cosec(42° + θ) - cot(12° - θ) - sec(48° - θ)