Advertisements
Advertisements
प्रश्न
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: cos72° - cos88°
उत्तर
cos72° - cos88°
= cos(90° - 18°) - cos(90° - 2°)
= sin18° - sin2°.
APPEARS IN
संबंधित प्रश्न
If 4 sin2 θ - 1= 0 and angle θ is less than 90°, find the value of θ and hence the value of cos2 θ + tan2θ.
If 4 cos2 x = 3 and x is an acute angle;
find the value of :
(i) x
(ii) cos2 x + cot2 x
(iii) cos 3x (iv) sin 2x
Solve for x : 2 cos (3x - 15°) = 1
Solve for 'θ': `sec(θ/2 + 10°) = (2)/sqrt(3)`
If A = B = 60°, verify that: sin(A - B) = sinA cosB - cosA sinB
Find the value of 'x' in each of the following:
In the given figure, ∠B = 60°, ∠C = 30°, AB = 8 cm and BC = 24 cm. Find:
a. BE
b. AC
Evaluate the following: `(sin25° cos43°)/(sin47° cos 65°)`
Evaluate the following: cot27° - tan63°
Evaluate the following: `(5sec68°)/("cosec"22°) + (3sin52° sec38°)/(cot51° cot39°)`