Advertisements
Advertisements
प्रश्न
If 4 cos2 x = 3 and x is an acute angle;
find the value of :
(i) x
(ii) cos2 x + cot2 x
(iii) cos 3x (iv) sin 2x
उत्तर
(i) 4 cos2x = 3
cos2x = `(3)/(4)`
cos x = `(sqrt3)/(2)`
x = 30°
(ii) cos2x + cot2x = cos230° + cot230°
= `(3)/(4) + 3`
= `(15)/(4)`
= 3`(3)/(4)`
(iii) cos 3x = cos3(30°) = cos 90° = 0
(iv) sin 2x = sin 2(30°) = sin60° = `(sqrt3)/(2)`
APPEARS IN
संबंधित प्रश्न
From the given figure,
find:
(i) cos x°
(ii) x°
(iii) `(1)/(tan^2 xx°) – (1)/(sin^2xx°)`
(iv) Use tan xo, to find the value of y.
State for any acute angle θ whether tan θ increases or decreases as θ decreases.
Solve the following equations for A, if `sqrt3` tan A = 1
Solve for x : tan2 (x - 5°) = 3
Solve for 'θ': cot2(θ - 5)° = 3
If θ = 30°, verify that: tan2θ = `(2tanθ)/(1 - tan^2θ)`
In the given figure; ∠B = 90°, ∠ADB = 30°, ∠ACB = 45° and AB = 24 m. Find the length of CD.
Evaluate the following: `(sec32° cot26°)/(tan64° "cosec"58°)`
Evaluate the following: `(tan42°)/(cot48°) + (cos33°)/(sin57°)`
Evaluate the following: `(3sin^2 40°)/(4cos^2 50°) - ("cosec"^2 28°)/(4sec^2 62°) + (cos10° cos25° cos45° "cosec"80°)/(2sin15° sin25° sin45° sin65° sec75°)`