Advertisements
Advertisements
प्रश्न
In ΔABC, ∠B = 90° , AB = y units, BC = `(sqrt3)` units, AC = 2 units and angle A = x°, find:
- sin x°
- x°
- tan x°
- use cos x° to find the value of y.
उत्तर
(i) From Δ ABC,
sin x° = `"perpendicular"/"Hypotenus" = (sqrt3)/(2)`
(ii) sin x° = `(sqrt3)/(2)`
sin x° = sin 60°
x° = 60°
(iii) tan x° = tan 60°
tan x° = `(sqrt3)`
(iv) cos x° = `"y"/2`
cos 60° = `"y"/2`
`1/2 = "y"/2`
`2/2` = y
∴ y = 1
APPEARS IN
संबंधित प्रश्न
State for any acute angle θ whether cos θ increases or decreases as θ increases.
Solve the following equation for A, if 2 sin A = 1
Calculate the value of A, if cos 3A. (2 sin 2A - 1) = 0
Solve for x : cos (2x - 30°) = 0
Find the value of 'A', if 2 sin 2A = 1
In the given figure, AB and EC are parallel to each other. Sides AD and BC are 1.5 cm each and are perpendicular to AB. Given that ∠AED = 45° and ∠ACD = 30°. Find:
a. AB
b. AC
c. AE
Find the value 'x', if:
Evaluate the following: `(tan42°)/(cot48°) + (cos33°)/(sin57°)`
If sin(θ - 15°) = cos(θ - 25°), find the value of θ if (θ-15°) and (θ - 25°) are acute angles.
Prove the following: sin230° + cos230° = `(1)/(2)sec60°`