Advertisements
Advertisements
प्रश्न
In the given figure, AB and EC are parallel to each other. Sides AD and BC are 1.5 cm each and are perpendicular to AB. Given that ∠AED = 45° and ∠ACD = 30°. Find:
a. AB
b. AC
c. AE
उत्तर
a. In right ΔADC,
tan30° = `"AD"/"DC"`
⇒ `(1)/sqrt(3) = (1.5)/"DC"`
⇒ DC = `1.5sqrt(3)`
Since AB || DC and AD ⊥ EC, ABCD is a parallelogram and hence opposite sides are equal.
⇒ AB
= DC
= `1.5sqrt(3)"cm"`.
b. In right ΔADC,
sin30° = `"AD"/"AC"`
⇒ `(1)/(2) = (1.5)/"AC"`
⇒ AC
= 2 x 1.5
= 3cm.
c. In right ΔADE,
sin45° = `"AD"/"AE"`
⇒ `(1)/sqrt(2) = (1.5)/"AE"`
⇒ AE = `1.5sqrt(2)`.
APPEARS IN
संबंधित प्रश्न
Solve the following equation for A, if sin 3 A = `sqrt3 /2`
If 2 sin x° - 1 = 0 and x° is an acute angle; find:
- sin x°
- x°
- cos x° and tan x°.
Solve for x : cos2 30° + sin2 2x = 1
Find the value of: `sqrt((1 - sin^2 60°)/(1 + sin^2 60°)` If 3 tan2θ - 1 = 0, find the value
a. cosθ
b. sinθ
Find the value 'x', if:
Find the value of 'y' if `sqrt(3)` = 1.723.
Given your answer correct to 2 decimal places.
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: tan77° - cot63° + sin57°
Evaluate the following: sin(35° + θ) - cos(55° - θ) - tan(42° + θ) + cot(48° - θ)
If sec2θ = cosec3θ, find the value of θ if it is known that both 2θ and 3θ are acute angles.
If A + B = 90°, prove that `(tan"A" tan"B" + tan"A" cot"B")/(sin"A" sec"B") - (sin^2"B")/(cos^2"A")` = tan2A