Advertisements
Advertisements
प्रश्न
Find the value of: `sqrt((1 - sin^2 60°)/(1 + sin^2 60°)` If 3 tan2θ - 1 = 0, find the value
a. cosθ
b. sinθ
उत्तर
`sqrt((1 - sin^2 60°)/(1 + sin^2 60°)`
= `sqrt((1 - (sqrt(3)/2)^2)/(1 + (sqrt(3)/2)^2`
= `sqrt((1 - 3/4)/(1 + 3/4)`
= `sqrt((1/4)/(7/4)`
= `sqrt(1/7)`
= `(1)/sqrt(7)`
3tan2θ - 1 = 0
⇒ 3tan2θ = 1
⇒ tan2θ = `(1)/(3)`
⇒ tanθ = `(1)/sqrt(3)`
⇒ tanθ = tan30°
⇒ θ = 30°
a. cos2θ
= cos2 x 30°
= cos60°
= `(1)/(2)`
b. sin3θ
= sin3 x 30°
= sin90°
= 1.
APPEARS IN
संबंधित प्रश्न
If 4 cos2 x° - 1 = 0 and 0 ∠ x° ∠ 90°,
find:(i) x°
(ii) sin2 x° + cos2 x°
(iii) `(1)/(cos^2xx°) – (tan^2 xx°)`
Solve the following equation for A, if 2cos2A = 1
Find the value of 'A', if cosec 3A = `(2)/sqrt(3)`
If sin α + cosβ = 1 and α= 90°, find the value of 'β'.
Find the value 'x', if:
Evaluate the following: `(sin25° cos43°)/(sin47° cos 65°)`
Evaluate the following: sin31° - cos59°
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: sin53° + sec66° - sin50°
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: cos84° + cosec69° - cot68°
Evaluate the following: `(3sin^2 40°)/(4cos^2 50°) - ("cosec"^2 28°)/(4sec^2 62°) + (cos10° cos25° cos45° "cosec"80°)/(2sin15° sin25° sin45° sin65° sec75°)`