Advertisements
Advertisements
प्रश्न
If sin α + cosβ = 1 and α= 90°, find the value of 'β'.
उत्तर
sin α + cos β = 1
⇒ sin 90° + cos β = 1
⇒ 1 + cos β = 1
⇒ cos β = 0
⇒ cos β = cos 90°
⇒ β = 90°.
APPEARS IN
संबंधित प्रश्न
If 4 sin2 θ - 1= 0 and angle θ is less than 90°, find the value of θ and hence the value of cos2 θ + tan2θ.
Use the given figure to find:
(i) tan θ°
(ii) θ°
(iii) sin2θ° - cos2θ°
(iv) Use sin θ° to find the value of x.
Solve the following equation for A, if sec 2A = 2
Solve for x : cos2 30° + cos2 x = 1
Find the value of 'x' in each of the following:
In the given figure, ∠B = 60°, ∠C = 30°, AB = 8 cm and BC = 24 cm. Find:
a. BE
b. AC
Evaluate the following: `(sec34°)/("cosec"56°)`
Evaluate the following: `(2sin28°)/(cos62°) + (3cot49°)/(tan41°)`
Evaluate the following: `(3sin37°)/(cos53°) - (5"cosec"39°)/(sec51°) + (4tan23° tan37° tan67° tan53°)/(cos17° cos67° "cosec"73° "cosec"23°)`
Prove the following: sin58° sec32° + cos58° cosec32° = 2