Advertisements
Advertisements
प्रश्न
If 4 sin2 θ - 1= 0 and angle θ is less than 90°, find the value of θ and hence the value of cos2 θ + tan2θ.
उत्तर
4 sin2 θ – 1 = 0
sin2 θ = `(1)/(4)`
sin θ = `(1)/(2)`
sin θ = sin30°
θ = 30°
cos2 θ + tan2 θ= cos230° + tan230°
= `(sqrt3/2)^2 + ( 1/sqrt3)^2`
= `(3)/(4) + (1)/(3)`
= `(9 + 4)/(12)`
= `(13)/(12)`
APPEARS IN
संबंधित प्रश्न
Calculate the value of A, if (sin A - 1) (2 cos A - 1) = 0
If 2 cos (A + B) = 2 sin (A - B) = 1;
find the values of A and B.
Solve the following equation for A, if 2 sin 3 A = 1
If sin 3A = 1 and 0 < A < 90°, find cos 2A
If θ = 30°, verify that: sin2θ = `(2tanθ)/(1 ++ tan^2θ)`
If A = 30°, verify that cos2θ = `(1 - tan^2 θ)/(1 + tan^2 θ)` = cos4θ - sin4θ = 2cos2θ - 1 - 2sin2θ
If `sqrt(3)` sec 2θ = 2 and θ< 90°, find the value of
cos2 (30° + θ) + sin2 (45° - θ)
Find the length of EC.
In the given figure, a rocket is fired vertically upwards from its launching pad P. It first rises 20 km vertically upwards and then 20 km at 60° to the vertical. PQ represents the first stage of the journey and QR the second. S is a point vertically below R on the horizontal level as P, find:
a. the height of the rocket when it is at point R.
b. the horizontal distance of point S from P.
Evaluate the following: cot20° cot40° cot45° cot50° cot70°