हिंदी

If 4 Sin2 θ - 1= 0 and Angle θ is Less than 90° Find the Value of θ and Hence the Value of Cos2 θ + Tan2θ - Mathematics

Advertisements
Advertisements

प्रश्न

If 4 sin2 θ - 1= 0 and angle θ is less than 90°, find the value of θ and hence the value of cos2 θ + tan2θ.

योग

उत्तर

4 sin2 θ – 1 = 0

sin2 θ = `(1)/(4)`

sin θ = `(1)/(2)`

sin θ = sin30°

θ = 30°

cos2 θ + tan2 θ= cos230° + tan230° 

= `(sqrt3/2)^2 + ( 1/sqrt3)^2`

= `(3)/(4) + (1)/(3)`

= `(9 + 4)/(12)`

= `(13)/(12)`

shaalaa.com
Trigonometric Equation Problem and Solution
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (C) [पृष्ठ २९८]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (C) | Q 5 | पृष्ठ २९८
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×