हिंदी

If A = 30°, verify that cos2θ = 1 − tan 2 θ 1 + tan 2 θ = cos4θ - sin4θ = 2cos2θ - 1 - 2sin2θ - Mathematics

Advertisements
Advertisements

प्रश्न

If A = 30°, verify that cos2θ = `(1 - tan^2 θ)/(1 + tan^2 θ)` = cos4θ - sin4θ = 2cos2θ - 1 - 2sin2θ

योग

उत्तर

Given: θ = 30°
cos2θ  = cos2 x 30° = cos60° = `(1)/(2)`

`(1 - tan^2 θ )/(1 + tan^2 θ )`

= `(1 - tan^2 30°)/(1 + tan^2 30°)`

= `(1 - (1/sqrt(3))^2)/(1 + (1/sqrt(3))^2)`

= `(1 - 1/3)/(1 + 1/3)`

= `(2/3)/(4/3)`

= `(1)/(2)`

cos4θ - sin4θ  = cos430° - sin430°

= `(sqrt(3)/2)^4 - (sqrt(1)/2)^4`

= `(9)/(16) - (1)/(16)`

= `(8)/(16)`

= `(1)/(2)`

2cos2θ - 1 = 2cos230° - 1

= `2(sqrt(3)/2)^2 - 1`

= `2 xx (3)/(4) - 1`

= `(3)/(2) - 1`

= `(1)/(2)`

1 - 2sin2θ  = 1 - 2sin230°

= `1 - 2(1/2)^2`

= `1 - 2 xx (1)/(4)`

= `1 - (1)/(2)`

= `(1)/(2)`
⇒ cos2θ 

= `(1 - tan^2 θ)/(1 + tan^2 θ)`

= cos4θ  - sin4θ 
= 2cos2θ  - 1
= 1 - 2sin2θ .

shaalaa.com
Trigonometric Equation Problem and Solution
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

फ्रैंक Mathematics [English] Class 9 ICSE
अध्याय 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 12.3
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×