Advertisements
Advertisements
प्रश्न
If A = 30°, verify that cos2θ = `(1 - tan^2 θ)/(1 + tan^2 θ)` = cos4θ - sin4θ = 2cos2θ - 1 - 2sin2θ
उत्तर
Given: θ = 30°
cos2θ = cos2 x 30° = cos60° = `(1)/(2)`
`(1 - tan^2 θ )/(1 + tan^2 θ )`
= `(1 - tan^2 30°)/(1 + tan^2 30°)`
= `(1 - (1/sqrt(3))^2)/(1 + (1/sqrt(3))^2)`
= `(1 - 1/3)/(1 + 1/3)`
= `(2/3)/(4/3)`
= `(1)/(2)`
cos4θ - sin4θ = cos430° - sin430°
= `(sqrt(3)/2)^4 - (sqrt(1)/2)^4`
= `(9)/(16) - (1)/(16)`
= `(8)/(16)`
= `(1)/(2)`
2cos2θ - 1 = 2cos230° - 1
= `2(sqrt(3)/2)^2 - 1`
= `2 xx (3)/(4) - 1`
= `(3)/(2) - 1`
= `(1)/(2)`
1 - 2sin2θ = 1 - 2sin230°
= `1 - 2(1/2)^2`
= `1 - 2 xx (1)/(4)`
= `1 - (1)/(2)`
= `(1)/(2)`
⇒ cos2θ
= `(1 - tan^2 θ)/(1 + tan^2 θ)`
= cos4θ - sin4θ
= 2cos2θ - 1
= 1 - 2sin2θ .
APPEARS IN
संबंधित प्रश्न
Solve the following equation for A, if 2 sin A = 1
Solve for x : 2 cos (3x - 15°) = 1
Solve for x : cos `(x/(2)+10°) = (sqrt3)/(2)`
Solve for x : cos2 30° + cos2 x = 1
If `sqrt(2) = 1.414 and sqrt(3) = 1.732`, find the value of the following correct to two decimal places tan60°
If θ = 30°, verify that: sin 3θ = 4sinθ . sin(60° - θ) sin(60° + θ)
Find the value 'x', if:
Evaluate the following: sin35° sin45° sec55° sec45°
Evaluate the following: `(2sin25° sin35° sec55° sec65°)/(5tan 29° tan45° tan61°) + (3cos20° cos50° cot70° cot40°)/(5tan20° tan50° sin70° sin40°)`
Evaluate the following: `(5cot5° cot15° cot25° cot35° cot45°)/(7tan45° tan55° tan65° tan75° tan85°) + (2"cosec"12° "cosec"24° cos78° cos66°)/(7sin14° sin23° sec76° sec67°)`