Advertisements
Advertisements
Question
If A = 30°, verify that cos2θ = `(1 - tan^2 θ)/(1 + tan^2 θ)` = cos4θ - sin4θ = 2cos2θ - 1 - 2sin2θ
Solution
Given: θ = 30°
cos2θ = cos2 x 30° = cos60° = `(1)/(2)`
`(1 - tan^2 θ )/(1 + tan^2 θ )`
= `(1 - tan^2 30°)/(1 + tan^2 30°)`
= `(1 - (1/sqrt(3))^2)/(1 + (1/sqrt(3))^2)`
= `(1 - 1/3)/(1 + 1/3)`
= `(2/3)/(4/3)`
= `(1)/(2)`
cos4θ - sin4θ = cos430° - sin430°
= `(sqrt(3)/2)^4 - (sqrt(1)/2)^4`
= `(9)/(16) - (1)/(16)`
= `(8)/(16)`
= `(1)/(2)`
2cos2θ - 1 = 2cos230° - 1
= `2(sqrt(3)/2)^2 - 1`
= `2 xx (3)/(4) - 1`
= `(3)/(2) - 1`
= `(1)/(2)`
1 - 2sin2θ = 1 - 2sin230°
= `1 - 2(1/2)^2`
= `1 - 2 xx (1)/(4)`
= `1 - (1)/(2)`
= `(1)/(2)`
⇒ cos2θ
= `(1 - tan^2 θ)/(1 + tan^2 θ)`
= cos4θ - sin4θ
= 2cos2θ - 1
= 1 - 2sin2θ .
APPEARS IN
RELATED QUESTIONS
If 2 sin x° - 1 = 0 and x° is an acute angle; find:
- sin x°
- x°
- cos x° and tan x°.
If 2 cos 2A = `sqrt3` and A is acute,
find:
(i) A
(ii) sin 3A
(iii) sin2 (75° - A) + cos2 (45° +A)
In ΔABC, ∠B = 90° , AB = y units, BC = `(sqrt3)` units, AC = 2 units and angle A = x°, find:
- sin x°
- x°
- tan x°
- use cos x° to find the value of y.
Solve for x : sin (x + 10°) = `(1)/(2)`
If θ = 30°, verify that: 1 - sin 2θ = (sinθ - cosθ)2
Evaluate the following: `((1 - cosθ)(1 + cosθ))/((1 - sinθ)(1 + sinθ)` if θ = 30°
Find the value 'x', if:
Find the value of 'y' if `sqrt(3)` = 1.723.
Given your answer correct to 2 decimal places.
Evaluate the following: `(sin36°)/(cos54°) + (sec31°)/("cosec"59°)`
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: cosec64° + sec70°