Advertisements
Advertisements
Question
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: cosec64° + sec70°
Solution
cosec64° + sec70°
= cosec(90° - 26°) + sec(90° - 20°)
= sec26° + cosec20°)
APPEARS IN
RELATED QUESTIONS
Solve the following equation for A, if sin 3 A = `sqrt3 /2`
If 4 cos2 x° - 1 = 0 and 0 ∠ x° ∠ 90°,
find:(i) x°
(ii) sin2 x° + cos2 x°
(iii) `(1)/(cos^2xx°) – (tan^2 xx°)`
If 2 cos 2A = `sqrt3` and A is acute,
find:
(i) A
(ii) sin 3A
(iii) sin2 (75° - A) + cos2 (45° +A)
In ΔABC, ∠B = 90° , AB = y units, BC = `(sqrt3)` units, AC = 2 units and angle A = x°, find:
- sin x°
- x°
- tan x°
- use cos x° to find the value of y.
Solve the following equation for A, if 2 sin 3 A = 1
Solve for x : cos (2x - 30°) = 0
In a right triangle ABC, right angled at C, if ∠B = 60° and AB = 15units, find the remaining angles and sides.
Evaluate the following: `(tan12°)/(cot78°)`
Evaluate the following: tan(78° + θ) + cosec(42° + θ) - cot(12° - θ) - sec(48° - θ)
Evaluate the following: `(5cot5° cot15° cot25° cot35° cot45°)/(7tan45° tan55° tan65° tan75° tan85°) + (2"cosec"12° "cosec"24° cos78° cos66°)/(7sin14° sin23° sec76° sec67°)`