Advertisements
Advertisements
Question
Evaluate the following: tan(78° + θ) + cosec(42° + θ) - cot(12° - θ) - sec(48° - θ)
Solution
tan(78° + θ) + cosec(42° + θ) - cot(12° - θ) - sec(48° - θ)
= tan[90° - (12° - θ)] + cosec[90° - (48° - θ)] - cot(12° - θ) - sec(48° - θ)
= cot(12° - θ) + sec(48° - θ)] - cot(12° - θ) - sec(48° - θ)
= 0.
APPEARS IN
RELATED QUESTIONS
Calculate the value of A, if (sin A - 1) (2 cos A - 1) = 0
Solve for x : tan2 (x - 5°) = 3
Solve for x : cos2 30° + cos2 x = 1
Solve for x : sin2 60° + cos2 (3x- 9°) = 1
Find the value of 'A', if 2 cos A = 1
If sin α + cosβ = 1 and α= 90°, find the value of 'β'.
If θ < 90°, find the value of: `tan^2θ - (1)/cos^2θ`
Find the value of 'y' if `sqrt(3)` = 1.723.
Given your answer correct to 2 decimal places.
Evaluate the following: sin22° cos44° - sin46° cos68°
If secθ= cosec30° and θ is an acute angle, find the value of 4 sin2θ - 2 cos2θ.