Advertisements
Advertisements
Question
Evaluate the following: sin22° cos44° - sin46° cos68°
Solution
sin22° cos44° - sin46° cos68°
= sin(90° - 68°) cos(90° - 46°) - sin46° cos68°
= cos68° sin46° - sin46° cos68°
= 0.
APPEARS IN
RELATED QUESTIONS
From the given figure,
find:
(i) cos x°
(ii) x°
(iii) `(1)/(tan^2 xx°) – (1)/(sin^2xx°)`
(iv) Use tan xo, to find the value of y.
If sin α + cosβ = 1 and α= 90°, find the value of 'β'.
If θ = 30°, verify that: 1 - sin 2θ = (sinθ - cosθ)2
Evaluate the following: `((1 - cosθ)(1 + cosθ))/((1 - sinθ)(1 + sinθ)` if θ = 30°
If A = B = 60°, verify that: tan(A - B) = `(tan"A" - tan"B")/(1 + tan"A" tan"B"")`
Find the value of 'x' in each of the following:
Find the value of 'y' if `sqrt(3)` = 1.723.
Given your answer correct to 2 decimal places.
Evaluate the following: `(5sec68°)/("cosec"22°) + (3sin52° sec38°)/(cot51° cot39°)`
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: cos72° - cos88°
Prove the following: sin230° + cos230° = `(1)/(2)sec60°`