Advertisements
Advertisements
Question
Evaluate the following: `(sin36°)/(cos54°) + (sec31°)/("cosec"59°)`
Solution
`(sin36°)/(cos54°) + (sec31°)/("cosec"59°)`
= `(sin(90° - 54°))/(cos54°) + (sec(90° - 59°))/("cosec"59°)`
= `(cos54°)/(cos54°) + ("cosec"59°)/("cosec"59°)`
= 1 + 1
= 2.
APPEARS IN
RELATED QUESTIONS
Calculate the value of A, if (sec 2A - 1) (cosec 3A - 1) = 0
If sin 3A = 1 and 0 < A < 90°, find cos 2A
If A = B = 60°, verify that: cos(A - B) = cosA cosB + sinA sinB
If A = B = 60°, verify that: tan(A - B) = `(tan"A" - tan"B")/(1 + tan"A" tan"B"")`
If `sqrt(3)` sec 2θ = 2 and θ< 90°, find the value of
cos2 (30° + θ) + sin2 (45° - θ)
Evaluate the following: `(sin62°)/(cos28°)`
Evaluate the following: sin22° cos44° - sin46° cos68°
Evaluate the following: `(tan42°)/(cot48°) + (cos33°)/(sin57°)`
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: cos84° + cosec69° - cot68°
If tan4θ = cot(θ + 20°), find the value of θ if 4θ is an acute angle.